康凯森

01 Introduction

03 Tdigest2: Clustering

Conclusion 04

02 Tdigest1: Buffer And Merge

Cumulative distribution function

$$F_X(x) = \mathrm{P}(X \leq x)_{ ext{c}}$$

- Example: [1, 2, 2, 3, 5]
 - $\mathrm{CDF}(0) = 0$
 - CDF(2) = 0.6
 - CDF(3) = 0.8
 - CDF(4) = 0.8

Quantile Function

- Inverse cumulative distribution function
- Example: [1, 2, 3, 4, 5]

 - quantile(0.7) = ?

• quantile(0.8) = 4 (80% data less than or equal to 4)

Precisely Compute Quantile Function

Linear interpolation

Precisely Compute Sample Code **Quantile Function**

quantile(double q, List<Double> data) { sort(data); //1 sort

> double index = q * data.size(); //2 index int intIndex = (int) index;

data[intIndex + 1] * (index - intIndex) +

//quantile(0.7) = 3*0.5 + 4*0.5 = 3.5

- data[intIndex] * (intIndex + 1 index); //3 linear interpolation

Linear Interpolation

The drawback of sorting all data

• Big Data

• Stream Processing

We need sketch

Sketch is common

- Statistics
- Physics
- Deep Learning
- Personas

Centroid represents a cluster of points

Centroid (mean, weight)

A: [(1,1),(1,1),(1,1),(2,1),(3,1)]

B: [(1,3),(2,1),(3,1)]

$(1,1),(1,1),(1,1) \longrightarrow (1,3)$

The quantile for A and B is the same

01 Introduction

03 Tdigest2: Clustering

04 Conclusion

02 Tdigest1: Buffer And Merge

Linear interpolation

Too big clusters

Too small clusters

Too big clusters

Too small clusters

domain of definition for quantile is $0 \sim 1$

1. compression: control the centroids number (control the accuracy)

2. K(q, compression): a mapping from quantile q to a centroid index k

troids number (control the accuracy

We use in example

q

 $k(q,\delta) = \delta * q$

TDigest **buffer-and-merge** arithmetic use

The advantage of buffer-and-merge k mapping

The accuracy near q = 0 or q = 1 is very, very fine

The advantage of buffer-and-merge k mapping

 $k(q,\delta) = \delta * q$

$$k(q,\delta) = \delta\left(\frac{\sin^{-1}(2q-1)}{\pi} + \frac{1}{2}\right)$$

The data structure of buffer-and-merge

mean	centroid		
weight	centroid		
tmp mean	point		
		-	
tmp weight	point		
order	index		

The core of buffer-and-merge

01 Introduction

03 Tdigest2: Clustering

04 Conclusion

02 Tdigest1: Buffer And Merge

Clustering

(a)

(f)

(e)

The core of clustering

minDistance

The data structure of clustering: AVL Tree

01 Introduction

03 Tdigest2: Clustering

04 Conclusion

02 Tdigest1: Buffer And Merge

• Accurate

• Fast

• Simple

• Monoidal (Map-Reduce)

• Probability and Statistics is great and interesting

• The more big-data and real-time, the more we need sketch

- Tdigest paper
- Tdigest code
- Some-important-streaming-algorithms-you-should-know-about
- Wikipedia

Eat better,Live better.

