Kylin 2.0 Spark Cubing 优化改进


作者: 康凯森

日期: 2017-07-02

分类: OLAP


Kylin 2.0 引入了Spark Cubing beta版本,本文主要介绍我是如何让 Spark Cubing 支持 启用Kerberos的HBase集群,再介绍下Spark Cubing的性能测试结果和适用场景。

Spark Cubing 简介

在简介Spark Cubing之前,我简介下MapReduce Batch Cubing。所谓的MapReduce Batch Cubing就是利用MapReduce 计算引擎 批量计算Cube,其输入是Hive表,输出是HBase的KeyValue,整个构建过程主要包含以下6步:

  1. 建立Hive的大宽表; (MapReduce计算)
  2. 对需要字典编码的列计算列基数; (MapReduce计算)
  3. 构建字典; (JobServer计算 or MapReduce计算)
  4. 分层构建Cuboid; (MapReduce计算)
  5. 将Cuboid转为HBase的KeyValue结构(HFile); (MapReduce计算)
  6. 元数据更新和垃圾回收。

详细的Cube生成过程可以参考 Apache Kylin Cube 构建原理

而Kylin 2.0的Spark Cubing就是在Cube构建的第4步替换掉MapReduce。

如下图,就是将5个MR job转换为1个Spark job:

(注:以下两个图片引自 Apache Kylin 官网的blogBy-layer Spark Cubing, 更详细的介绍也可以参考这篇blog。)

MapReduce 计算5层的Cuboid会用5个MR Application计算: 此处输入图片的描述

Spark 计算Cuboid只会用1个 Application计算: 此处输入图片的描述

Spark Cubing的核心实现类是SparkCubingByLayer

为什么目前只有计算Cuboid这一步用Spark计算?

个人认为主要有以下两点:

  1. 实现并不复杂。
  2. 收益会比较明显。Cuboid的分层计算方法天然可以利用RDD的Cache特性来加速Cuboid 计算,最理想的情况,如果executor的内存能够完全cache住每层Cuboid的RDD,那就可以完全避免读写磁盘,必然会比MapReduce快很多。

我认为第2点是主要原因。

Cube构建的其他步骤不可以用Spark计算吗?

当然可以! 其中第1步 建立Hive的大宽表 和 第5步 生成HFile 替换为Spark是十分简单的,但是性能提升可能不会十分明显。 至于2步计算列基数,其代码逻辑应该是整个Cube构建中最复杂的一步,复杂的主要原因就是这一步肩负的使命略多。 还有第3步MR构建字典,因为MR构建本身尚不成熟,自然不急着迁移到Spark

Spark Cubing beta版本目前最大的问题就是不支持启用Kerberos认证的HBase集群,而事实上不少企业级的HBase服务都启用了Kerberos认证。不支持的原因主要是Spark Cubing需要直接从HBase中访问cube,dict等元数据信息。

Spark Cubing 访问 Kerberos认证的 HBase 解1

第一种简单的做法是将访问HBase的token从Kylin的JobServer传递到executor中,这种做法的限制是只能运行在Yarn-client模式中,即必须让driver运行在Kylin的JobServer中。 关于yarn-cluster mode和yarn-client mode两种模式的区别可以参考: Apache Spark Resource Management and YARN App Models

这种做法的实现方式很简单,只需在SparkCubingByLayer的new SparkConf()之前加入以下3行代码:

        Configuration configuration = HBaseConnection.getCurrentHBaseConfiguration();
        HConnection connection = HConnectionManager.createConnection(configuration);
        TokenUtil.obtainAndCacheToken(connection, UserProvider.instantiate(configuration).create(UserGroupInformation.getCurrentUser()));

但是如果只能在yarn-client模式下运行,必然无法运行在生产环境,因为Kylin JobServer机器的内存肯定不够用。

Spark Cubing 访问 Kerberos认证的 HBase 解2

既然Spark Cubing在 启用Kerberos认证的 HBase集群下无法运行的根本原因是 Spark Cubing需要从HBase 直接访问Job相关的Kylin元数据, 那我们把元数据换个地方存不就可以了, 所以我们将每个Spark Job相关的Kylin元数据上传到HDFS,并用Kylin的HDFSResourceStore来管理元数据

在介绍实现思路前,我先简介下Kylin元数据的存储结构和Kylin的ResourceStore。

首先,Kylin每个具体的元数据都是一个JSON文件,整个元数据的组织结构是个树状的文件目录。 如图是Kylin元数据的根目录: 屏幕快照 2017-07-02 下午3.51.43.png-20.7kB 下图是project目录下的具体内容,其中learn_kylin和kylin_test都是project名称: 屏幕快照 2017-07-02 下午3.54.59.png-11.8kB

我们知道Kylin元数据的组织结构后,再简介下Kylin元数据的存储方式。 元数据存储的抽象类是ResourceStore,具体的实现类共有3个:

  • FileResourceStore 本地文件系统
  • HBaseResourceStore HBase
  • HDFSResourceStore HDFS

其中只有HBase可以用于生产环境,本地文件系统主要用来测试,HDFS不能用于生产的原因是并发处理方面还有些问题。具体用哪个ResourceStore是通过配置文件的kylin.metadata.url来决定的。

所以下面的问题就是我们如何将HBase中的元数据转移到HDFS 和如何将HBaseResourceStore 转为 HDFSResourceStore?

  1. 确定Spark Job需要读取哪些Kylin元数据
  2. 将需要的Kylin元数据dump到本地
  3. 改写kylin.metadata.url并将所有配置写到本地的元数据目录
  4. 利用ResourceTool将本地的元数据上传到指定的HDFS目录
  5. 在Spark executor中根据指定HDFS元数据目录的Kylin配置文件构造出HDFSResourceStore。

当然,在最后我们需要清理掉指定HDFS目录的元数据。 整个思路比较简单清晰,但是实际实现中还是有很多细节需要去考虑。

Spark Cubing 参数配置

以下是我使用的Spark配置,目的是尽可能让用户不需要关心Spark的配置

//运行在yarn-cluster模式
kylin.engine.spark-conf.spark.master=yarn
kylin.engine.spark-conf.spark.submit.deployMode=cluster 

//启动动态资源分配,个人认为在Kylin生产场景中是必须的,因为我们不可能让每个用户自己去指定executor的个数
kylin.engine.spark-conf.spark.dynamicAllocation.enabled=true
kylin.engine.spark-conf.spark.dynamicAllocation.minExecutors=10
kylin.engine.spark-conf.spark.dynamicAllocation.maxExecutors=1024
kylin.engine.spark-conf.spark.dynamicAllocation.executorIdleTimeout=300
kylin.engine.spark-conf.spark.shuffle.service.enabled=true
kylin.engine.spark-conf.spark.shuffle.service.port=7337

//内存设置
kylin.engine.spark-conf.spark.driver.memory=4G
//数据规模较大或者字典较大时可以调大executor内存
kylin.engine.spark-conf.spark.executor.memory=4G 
kylin.engine.spark-conf.spark.executor.cores=1

//心跳超时
kylin.engine.spark-conf.spark.network.timeout=600

//队列设置
kylin.engine.spark-conf.spark.yarn.queue=root.rz.hadoop-hdp.test

//分区大小
kylin.engine.spark.rdd-partition-cut-mb=100

Spark Cubing 的构建性能

对于百万级,千万级,亿级的源数据,且无很大字典的情况下,我的测试结果和官方By-layer Spark Cubing 的结果基本一致,构建速度提升比较明显,而且Cuboid的层次数越多,提速越明显。

此外,我专门测试了数十亿级源数据或者有超大字典的情况,构建提速也十分明显:

测试Cube1

原始数据量: 27亿行 9个维度 包含1个精确去重指标 字典基数7千多万

MR Cuboid构建耗时: 75分钟

Spark Cuboid第一次构建耗时: 40分钟 (spark.executor.memory = 8G,没有加spark.memory.fraction参数)

Spark Cuboid第二次构建耗时: 24分钟 (spark.executor.memory = 8G,spark.memory.fraction = 0.5)

为什么减小spark.memory.fraction可以加速构建?

因为减小spark.memory.fraction,可以增大executor中User Memory的大小,给Kylin字典更多的内存,这样就可以避免全局字典换入换出,减少GC。

测试Cube2

原始数据量:24亿行 13个维度 38个指标(其中9个精确去重指标) 不过这个cube的精确去重指标基数比较小,只有几百万。

MR Cuboid构建耗时: 31分钟

Spark Cuboid构建耗时: 8分钟

总结来说,Spark Cubing的构建性能相比MR有1倍到3倍的提升

Spark Cubing 的资源消耗

除了构建性能,我们肯定还会关注资源消耗。在这次测试中我没有对所以测试结果进行资源消耗分析,只分析了几个Cube。

我的结论是,在我采用的Spark配置情况下,对于中小规模数据集Spark的资源消耗是小于MR的(executor的内存是4G); 对于有大字典的情况(executor的内存是8G),CPU资源Spark是小于MR的,但是内存资源Spark会比MR略多,在这种情况下,我们相当于用内存资源来换取了执行效率

Spark Cubing 的优缺点

优点:

  • 利用RDD的Cache特性,尽可能利用内存来避免重复IO
  • 大部分场景下Cuboid构建速度有明显提升
  • 在集群资源充足的情况下,我们可以用更多的资源换取更好的构建性能

缺点:

  • 目前版本还未历经生产环境考验,稳定性不确定
  • 不适合有超大字典的场景
  • 引入Spark Cubing将带来额外的运维成本和沟通成本

Spark Cubing 的适用场景

个人的结论是,除了有好几亿基数超大字典的这种情况,其他情况应该都适用Spark Cubing,其中:

  1. Cuboid层次越多越适用。
  2. 数据规模越小越适用。
  3. 字典越小越适用。

Spark Cubing 字典加载优化

Spark和MR有一点重要的区别就是Spark的Task是在线程中执行的,MR的Task是在进程中执行的。 这点区别会对Kylin的Cube 构建造成重要影响,在MR Cubing中,每个Mapper task 只需要load一次字典,但是在Spark Cubing中,一个executor的多个task会多次load 字典,如果字典较大,就会造成频繁GC,导致执行变慢。

针对这个问题,我做了两点优化:

  1. 让每个executor里的字典只load一次,让该executor的所有Task共享字典。
  2. 给全局字典的AppendTrieDictionary中使用的LoadingCache增加maximumSize。 我用了一个有6亿基数的全局字典测试了这个优化,优化后GC时间明显缩短。

Spark 学习资料推荐

网上公开资料如果只推荐一份的话,我推荐: spark-internals

此外,这几篇文章也不错:

Spark Memory Management

Spark Architecture: Shuffle

how-to-tune-your-apache-spark-jobs-part-1

how-to-tune-your-apache-spark-jobs-part-2

Spark性能优化指南——基础篇

Spark性能优化指南——高级篇

Spark源码分析之-scheduler模块

当然,看的资料再多自己不思考都没啥卵用。 学习一个系统,我们可以从系统的整体架构和设计层面开始,自顶向下的学习,也可以从一个具体的问题把整个系统涉及的所有模块串起来,切面式学习。 个人感觉两种方式结合着效率会比较高,而且一般从具体问题入手会让印象更深刻,理解更深入。

总结

用HDFSResourceStore替换HBaseResourceStore后,Spark Cubing已经具备了在启用Kerberos的HBase集群环境下大规模使用的基础。后续我将开放Spark Cubing功能让感兴趣的用户使用。最后,十分感谢我们团队Spark 小伙伴的给力支持。


《OLAP 性能优化指南》欢迎 Star&共建

《OLAP 性能优化指南》

欢迎关注微信公众号